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Quantum breaking time scaling in superdiffusive dynamics
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We show that the breaking time of quantum-classical correspondence depends on the type of kinetics and the
dominant origin of stickiness. For sticky dynamics of quantum kicked rotor, when the hierarchical set of
islands corresponds to the accelerator mode, we demonstrate by simulation that the breaking time scales as
75~ (1/h)Y# with the transport exponept>1 that corresponds to superdiffusive dynanjiBsSundaram and
G. M. Zaslavsky, Phys. Rev. B9, 7231(1999]. We discuss also other possibilities for the breaking time
scaling and transition to the logarithmic omg~In(1/4) with respect tah.
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Classical chaotic dynamics can be characterized by #&or the breaking time of classical consideration applicability
Lyapunov exponenf\ and infinitely divisible flamentation with a value of § depending on the type of the classical
of the phase flux. Quantized procedure stops the filamentalgebraic escape time distribution. There were no quantum
tion due to the uncertainty principle and, as a result, breaksimulation in these works and no definite valuessois-
the applicability of semiclassical approximation. The corre-cussion of the algebraic lawd) started in[11,17,1§ was

sponding breaking time was found fith] continued in recent publication®20-25 on the basis of
simulations of quantum maps with an explicit evaluation of
7, =(LA)In(ly/h), 1) Eq. (2).

wherel, is a characteristic action, indicating a faskpo- The following questions arise: What is the actual scaling

nentia) growth of quantum corrections to the classical d _of the breaking time of quantum-classical correspondence
9 q Y with respect to the Planck constant, logarithmic or algebraic?

namics due to chaos. The origin of this time was explained Mow universal are values of or 52 Using some results of
d.eta”. n [2].anq gained wide dlscussm[ﬂ—lo]: The loga- [26,27 on the strong delocalization effects and simulation
rlthmlc scallng mﬁ. fpr Th correspon_ds to a fairly good and for the quantum kicked rotaiQKR) we will show here that
uniform chaotic mixing(see also a final comment jA.1]). the result(1), being valid for the cases of norm@baussian

Typical Hamiltonian chaotic dynamics is not ergodic due P :
A . type) diffusion, appears to be an algebraic of the ty@e
to the presence of infinite islands set in phase sptieand when diffusion becomes anomalous, i.e., superdiffusion with

the L.yap“f?OV exponent is not unlform due to cantori andthe second moment of the truncated distribution function as
possible hierarchical structures of islanfl2] and their

stickinesg13,14]. This complicates the process of diffusion, (p?)~t~ (4)
transforming the transport from the Gaussian type to the
anomalougfractiona) one[15,16. Particularly, sticky prop- and transport exponeni>1. We were able to obtain?}
erties of the island boundaries should impose algebraic lawgom the simulation as a crossover time of the survival prob-
of the survival probability ability that changes the exponent of its algebraic behavior,
P(t)~ 117 @ and compare values_ éfpre_dicted by the theory with the one
obtained from the simulation.
We consider QKR that corresponds to the standard map in

of a particle to escape after timifrom a domain near the : -
gthe classical limit

islandg[15,14]. The immediate consequence from the scalin
property(2) is its breaking at some critical time* for the '— 4K s '—gtp’
case of quantum chaos since a hierarchical dynamical chain p'=p+Ksing, g’=q+p ®

has no limitt—c and should be abrupted when an island inyefined on the cylindep e (—,), qe (-, ) with a

the chain reaches aregt =# and the quantum effects be- ¢onirol parametek and the Lyapunov exponent~In K for
come important. This comment, starting frgav], was dis-  s.1 and for almost all domains excluding areas where
cussed in detail in11], where a power law for the Planck |cosql<1. The marginally stable points are defined by the
constant scaling was suggested, conditions K,=2mm, p=2mn, q==*=/2 with integers

r;~1/ﬁ5, 3) (m,n). For
0<K—-K,<AK, (6)

*Permanent address: Department of Physics, Technion, Haif& new set of islands appedis3,28,29, called tangle islands
32000, Israel. Electronic address: phr92ai@physics.technion.ac.ilin [29], as a result of bifurcation. Dynamics inside the is-

TAlso at Department of Physics, New York University, 2-4 Wash- lands is known as the accelerator m¢86,31 and we will
ington Place, New York, NY 10003. Electronic address:call them accelerator mode islang&MI). Changing ofK
zaslav@cims.nyu.edu within the interval (6) influences strongly the topological
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structure of AMI and consequently the values of the transwith A =1/\; and
port exponentu= w(K) [32,16 since the stickiness of tra-
jectories to the island boundaries can be different for differ- p=lInAg/In\s. (14)

ent island topologies. The expression gk through\ g, was found in32] for the

Valﬁewgiisgblzhggs'rg?] thairfg;ti?:k?ﬁggéagal:?Jgemes)pe- c_onside_red island h@erarqhy and the_ expressionrfocoin-
. o e . cides with that obtained if26] in a different way. The ex-
qlally what makes this case convenient to study the prqperﬁressior(li%) is close to Eq(3) up to a logarithmic term and
ties of the anomalous transport. A¢F, it appears as a hi- efines
erarchical set of islands around islands with the islandd
sequence 3-8-8-8--. The island chain satisfies the renor- 5=1lu, (15)
malization conditions
which for K=K* providesu =1.25(see[16]) and 5 = 0.8.
SMFD=\SM, TOFD=)\;TM, NO*D =) N, When there is no island hierarchy, we may pug—0 or
(1) ny—0. This yields transition from the algebraic 14a3) to
the logarithmic one for the breaking time and resolves the
paradox discussed [d1]. In addition to this, it was shown in
[16] that for the considered island hierarchy

wheren is a number in the hierarchy sequen&®? is an
island area,T(™ is the period of the last invariant curve of
the corresponding islandy™ is a number of islands in the
chain of thenth hierarchy level, and <1, At>1, \y>1 y=1+u=1+|In\g/In\t, (16)
are some scaling parameters. The renormalization transform

(7) can be also extended for Lyapunov exponefitsn a  that givesy=2.25 forK=K*. We have checked just these
sticky area of the island’s boundary of th¢h level of the values ofy andé by a simulation.

island’s hierarchy32], Numerical study of the problem is based on investigation
of the quantum survival probability in some domain
ACTD= N A®=NTAQ (<. (8)  Ape(—,m) that includes the island hierarch@4]. The

) L . main difficulty appears due to a part of the wave function
In the absence of the island’s hierarchy, we get just thgnat helongs to an island interior and “flies” fast alopgA

result(1) with A=A, In the presence of the island’s hier- simple way to avoid this type of the “escape” frofp is to
archy we can introduce particle flug(™ in phase space apply a shift operator

through the island’s chain of thieth hierarchical level. It

reads J=exp(—2miq/h), (17)
DM =SINM/TO = DO\ /A", whereq is a dimensionless coordinate=hn= —iha/dq is

a dimensionless momentum operator and the wave function

W, is considered in the coordinate space at a discretettime

In analogy with[20,35 we also introduce the absorbing

boundary conditions at the edges of the interval

Ane[—(N+1)/2,(N—1)/2] for the momentum eigenvalues

DM =)\2p©. (100 hin by the projection operatd?. Then the quantum map that

) . . ) keeps the information of the trapping intbn part of the
The quantum mechanical consideration of the proliferayyaye function is

tion of islands is meaningful until the smallest island size is
of the order of. Therefore we get from Eqs7), (9), and V., 1=PI0V, (18
(10,

@ (0)=gON©)/T(0) (9)

in correspondence to Egé/) and (8). For K=K* and the
corresponding island’s hierarchyy=\+ [16],

] with the evolution operator
Siin=f =S =S5O\, s .
U=exp —ihn</2)exd —i(K/h)cosq]. (19

=@ (0)\ "o— y Nog(0)p(0)/T(0) — (0)/7(0) . . . .
P yin=P Ag )‘ss NTT ANTPITE, (1) As usual, for the numerical convenience the dimensionless

Planck constanh is taken in a formh=2/(N+g), where
g=(\/5—1)/2 is the inverse golden mean.
No=|IN(A/S)|/|In\g|=|InR|/|In\g], (12) The survival probability is defined as

P(t)=|W? (20)

and the quantum “cutoff” of the hierarchy appears at

where we introduce a dimensionless semiclassical parameter

h=#/1, and specifyS9’=1,. Particularly, for the hierarchy together with definition18). Simulation was performed for
atK=K* we haveN(®)=3 and\ =8 but it could be many 12 values ofN from the interval (5<10°—7.5x10%) that
other hierarchiegsee more in33]). After the substitution corresponds to a good semiclassical approximation for a

A=A we get with Eqs(8) and(12), fairly long time until it fails.
_ _ ~ A typical behavior of P(t), obtained forK=K*, is
7= (UAM)In(1/h) = (1/h)*In(1/h) (13)  shown in Fig. 1. It consists of the crossover from the classi-
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FIG. 1. Typical evolution of the quantum survival probability |G, 2. The quantum breaking points vs dimensionless semi-

for N:2.5 557. The das_hed lines, V.VhiCh _correspond to theclassical parameteﬁ. The solid line with the slope &~1.33
asymptotic slopes, determine the breaking peint

+0.36 corresponds to least square calculations, and the dashed line

cal behavion2) with y=~2.25 (the same as ifiLl6]) to some 's the analytical prediction wit=1/u.

very different dependence. The crossover pointsan be  scribed in[15] and to the value
identified in a way shown in Fig. 1 for different valuesiéf

i.e., h. The corresponding result is presented in Fig. 2. It o=1ly. (21)

provides the value of B~1.33+0.36~u in good agree- . .
; : ! This value was not linked to the transport exponentd_et
ment with the presented theoretical estimafisee Eq(15)]. ys mention also the valué~0.5 proposed if35] for K

In conclusion, we need to emphasize that there is n = 2.5 when the sticky island set appears without accelerator
unigue scenario of chaotic diffusion in the classical limit and = . y nd set app
ode and with no superdiffusion.

therefore one may expect no unique breaking mechanism éF
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