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Quantum breaking time scaling in superdiffusive dynamics
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~Received 28 November 2000; published 29 March 2001!

We show that the breaking time of quantum-classical correspondence depends on the type of kinetics and the
dominant origin of stickiness. For sticky dynamics of quantum kicked rotor, when the hierarchical set of
islands corresponds to the accelerator mode, we demonstrate by simulation that the breaking time scales as
t\;(1/\)1/m with the transport exponentm.1 that corresponds to superdiffusive dynamics@B. Sundaram and
G. M. Zaslavsky, Phys. Rev. E59, 7231 ~1999!#. We discuss also other possibilities for the breaking time
scaling and transition to the logarithmic onet\; ln(1/\) with respect to\.

DOI: 10.1103/PhysRevE.63.047203 PACS number~s!: 05.45.Mt
y

nt
ak
re

y
d

d

ue

n

n,
th

aw

in

ha
in
-

k

ity
al
tum

of

ing
nce
ic?
f
on

ith
as

b-
ior,
e

p in

re
he

is-

l

ai
c.i
h
s

Classical chaotic dynamics can be characterized b
Lyapunov exponentL and infinitely divisible filamentation
of the phase flux. Quantized procedure stops the filame
tion due to the uncertainty principle and, as a result, bre
the applicability of semiclassical approximation. The cor
sponding breaking time was found in@1#

t\5~1/L!ln~ I 0 /\!, ~1!

where I 0 is a characteristic action, indicating a fast~expo-
nential! growth of quantum corrections to the classical d
namics due to chaos. The origin of this time was explaine
detail in @2# and gained wide discussion@3–10#. The loga-
rithmic scaling in\ for t\ corresponds to a fairly good an
uniform chaotic mixing~see also a final comment in@11#!.

Typical Hamiltonian chaotic dynamics is not ergodic d
to the presence of infinite islands set in phase space@12#, and
the Lyapunov exponent is not uniform due to cantori a
possible hierarchical structures of islands@12# and their
stickiness@13,14#. This complicates the process of diffusio
transforming the transport from the Gaussian type to
anomalous~fractional! one@15,16#. Particularly, sticky prop-
erties of the island boundaries should impose algebraic l
of the survival probability

P~ t !;1/tg ~2!

of a particle to escape after timet from a domain near the
islands@15,14#. The immediate consequence from the scal
property~2! is its breaking at some critical timet* for the
case of quantum chaos since a hierarchical dynamical c
has no limitt→` and should be abrupted when an island
the chain reaches areaS* 5\ and the quantum effects be
come important. This comment, starting from@17#, was dis-
cussed in detail in@11#, where a power law for the Planc
constant scaling was suggested,

t\* ;1/\d, ~3!
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for the breaking time of classical consideration applicabil
with a value ofd depending on the type of the classic
algebraic escape time distribution. There were no quan
simulation in these works and no definite values ofd. Dis-
cussion of the algebraic law~3! started in@11,17,18# was
continued in recent publications@20–25# on the basis of
simulations of quantum maps with an explicit evaluation
Eq. ~2!.

The following questions arise: What is the actual scal
of the breaking time of quantum-classical corresponde
with respect to the Planck constant, logarithmic or algebra
How universal are values ofg or d? Using some results o
@26,27# on the strong delocalization effects and simulati
for the quantum kicked rotor~QKR! we will show here that
the result~1!, being valid for the cases of normal~Gaussian
type! diffusion, appears to be an algebraic of the type~2!
when diffusion becomes anomalous, i.e., superdiffusion w
the second moment of the truncated distribution function

^p2&;tm ~4!

and transport exponentm.1. We were able to obtaint\*
from the simulation as a crossover time of the survival pro
ability that changes the exponent of its algebraic behav
and compare values ofd predicted by the theory with the on
obtained from the simulation.

We consider QKR that corresponds to the standard ma
the classical limit

p85p1K sinq, q85q1p8 ~5!

defined on the cylinderpP(2`,`), qP(2p,p) with a
control parameterK and the Lyapunov exponentL; ln K for
K@1 and for almost all domains excluding areas whe
Kucosqu,1. The marginally stable points are defined by t
conditions Km52pm, p52pn, q56p/2 with integers
(m,n). For

0,K2Km,DKm ~6!

a new set of islands appears@13,28,29#, called tangle islands
in @29#, as a result of bifurcation. Dynamics inside the
lands is known as the accelerator mode@30,31# and we will
call them accelerator mode islands~AMI !. Changing ofK
within the interval ~6! influences strongly the topologica
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structure of AMI and consequently the values of the tra
port exponentm5m(K) @32,16# since the stickiness of tra
jectories to the island boundaries can be different for diff
ent island topologies.

It was established in@16# that for a special~‘‘magic’’ !
value ofK[K* 56.908 745 . . . , thestickiness can be espe
cially what makes this case convenient to study the prop
ties of the anomalous transport. ForK* , it appears as a hi
erarchical set of islands around islands with the isla
sequence 3-8-8-8-•••. The island chain satisfies the reno
malization conditions

S(n11)5lSS(n), T(n11)5lTT(n), N(n11)5lNN(n),
~7!

where n is a number in the hierarchy sequence,S(n) is an
island area,T(n) is the period of the last invariant curve o
the corresponding island,N(n) is a number of islands in the
chain of thenth hierarchy level, andlS,1, lT.1, lN.1
are some scaling parameters. The renormalization trans
~7! can be also extended for Lyapunov exponentsL in a
sticky area of the island’s boundary of thenth level of the
island’s hierarchy@32#,

L (n11)5lLL (n)5lL
nL (0) ~lL,1!. ~8!

In the absence of the island’s hierarchy, we get just
result~1! with L5L (0). In the presence of the island’s hie
archy we can introduce particle fluxF (n) in phase space
through the island’s chain of thenth hierarchical level. It
reads

F (n)5S(n)N(n)/T(n)5F (0)~lSlN /lT!n,

F (0)5S(0)N(0)/T(0) ~9!

in correspondence to Eqs.~7! and ~8!. For K5K* and the
corresponding island’s hierarchylN5lT @16#,

F (n)5lS
nF (0). ~10!

The quantum mechanical consideration of the prolife
tion of islands is meaningful until the smallest island size
of the order of\. Therefore we get from Eqs.~7!, ~9!, and
~10!,

Smin5\5S(n0)5S(0)lS
n0 ,

Fmin5F (0)lS
n05lS

n0S(0)N(0)/T(0)5\N(0)/T(0), ~11!

and the quantum ‘‘cutoff’’ of the hierarchy appears at

n05u ln~\/S(0)!u/u ln lSu[u ln h̃u/u ln lSu, ~12!

where we introduce a dimensionless semiclassical param
h̃5\/I 0 and specifyS(0)[I 0. Particularly, for the hierarchy
at K5K* we haveN(0)53 andlN58 but it could be many
other hierarchies~see more in@33#!. After the substitution
L5L (n0) we get with Eqs.~8! and ~12!,

t\5~1/L (n)!ln~1/h̃!5~1/h̃!1/mln~1/h̃! ~13!
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with lL51/lT and

m5u ln lSu/ ln lT . ~14!

The expression ofm throughlS ,lT was found in@32# for the
considered island hierarchy and the expression fort\ coin-
cides with that obtained in@26# in a different way. The ex-
pression~13! is close to Eq.~3! up to a logarithmic term and
defines

d51/m, ~15!

which for K5K* providesm51.25 ~see@16#! andd 5 0.8.
When there is no island hierarchy, we may putlS→0 or
n0→0. This yields transition from the algebraic law~13! to
the logarithmic one for the breaking time and resolves
paradox discussed in@11#. In addition to this, it was shown in
@16# that for the considered island hierarchy

g511m511u ln lSu/ ln lT , ~16!

that givesg52.25 for K5K* . We have checked just thes
values ofg andd by a simulation.

Numerical study of the problem is based on investigat
of the quantum survival probability in some doma
DpP(2p,p) that includes the island hierarchy@34#. The
main difficulty appears due to a part of the wave functi
that belongs to an island interior and ‘‘flies’’ fast alongp. A
simple way to avoid this type of the ‘‘escape’’ fromDp is to
apply a shift operator

Ĵ5exp~22p iq/h̃!, ~17!

whereq is a dimensionless coordinate,p̂5h̃n̂52 i h̃]/]q is
a dimensionless momentum operator and the wave func
C t is considered in the coordinate space at a discrete timt.
In analogy with @20,35# we also introduce the absorbin
boundary conditions at the edges of the interv
DnP@2(N11)/2,(N21)/2# for the momentum eigenvalue
h̃n by the projection operatorP̂. Then the quantum map tha
keeps the information of the trapping intoDn part of the
wave function is

C t115P̂ĴÛC t ~18!

with the evolution operator

U5exp~2 i h̃ n̂2/2!exp@2 i ~K/h̃!cosq#. ~19!

As usual, for the numerical convenience the dimensionl
Planck constanth̃ is taken in a formh̃52p/(N1g), where
g5(A521)/2 is the inverse golden mean.

The survival probability is defined as

P~ t !5uC tu2 ~20!

together with definition~18!. Simulation was performed fo
12 values ofN from the interval (5310327.53104) that
corresponds to a good semiclassical approximation fo
fairly long time until it fails.

A typical behavior of P(t), obtained for K5K* , is
shown in Fig. 1. It consists of the crossover from the clas
3-2
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cal behavior~2! with g'2.25 ~the same as in@16#! to some
very different dependence. The crossover pointst\ can be
identified in a way shown in Fig. 1 for different values ofN,
i.e., h̃. The corresponding result is presented in Fig. 2
provides the value of 1/d'1.3360.36'm in good agree-
ment with the presented theoretical estimation@see Eq.~15!#.

In conclusion, we need to emphasize that there is
unique scenario of chaotic diffusion in the classical limit a
therefore one may expect no unique breaking mechanism
quantum classical correspondence. Stickiness and alge
kinetics through cantori was considered in@15# with a spe-
cific choice of the Markov tree that defined a type of kinet
and corresponding scales. In this consideration a specia
erarchical set of resonance islands was selected, whil
@16,32# the Markov tree was constructed for the tangle
lands~see more about the classification in@29#!. The differ-
ence in the choice of the island set selection is imposed
the value ofK. In this article we chooseK5K* , which leads
to Eq. ~15!, while in @25,36,37# the valueK<2p was se-
lected that probably leads to the stickiness phenomenon

FIG. 1. Typical evolution of the quantum survival probabili
for N525 557. The dashed lines, which correspond to
asymptotic slopes, determine the breaking pointt\ .
it
th
inc
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scribed in@15# and to the value

d51/g. ~21!

This value was not linked to the transport exponentsm. Let
us mention also the valued;0.5 proposed in@35# for K
52.5 when the sticky island set appears without acceler
mode and with no superdiffusion.
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FIG. 2. The quantum breaking pointst\ vs dimensionless semi

classical parameterh̃. The solid line with the slope 1/d'1.33
60.36 corresponds to least square calculations, and the dashe
is the analytical prediction withd51/m.
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